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SUMMARY

This paper discusses the application of iterative methods for solving linear systems arising in static tire
equilibrium computation. The heterogeneous material properties, nonlinear constraints, and a three
dimensional finite element formulation make the linear systems arising in tire design difficult to solve by
iterative methods. An analysis of the matrix characteristics helps understand this behavior. This paper
focuses on two preconditioning techniques: a variation of an incomplete LU factorization with threshold
and a multilevel recursive solver. We propose to adapt these techniques in a number of ways to work
for a class of realistic applications. In particular, it was found that these preconditioners improve
convergence only when a rather large shift value is added to the matrix diagonal. A combination of
other techniques such as filtering of small entries, pivoting in preconditioning, and a special way of
defining levels for the multilevel recursive solver are shown to make these preconditioning strategies
efficient for problems in tire design. We compare these techniques and assess their applicability when
the linear system difficulty varies for the same class of problems. Copyright © 2000 John Wiley &
Sons, Ltd.

KEY WORDS: incomplete LU factorization, multilevel preconditioning, ill-conditioned linear systems,
generalized minimum residual method

1. Introduction

Static equilibrium computation routinely takes place in the tire manufacturing process. Tire
stability analysis is based on a 3D finite element model with distributed loads (see, e.g., [1]).
Due to the elongated shape of the tire, there is a large difference in the numbers of elements
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Figure 1. Three dimensional topology of the tire model

n1, na, and ng modeling height, length, and width of the tire, respectively (Figure 1). Here we
consider a medium tire model M and a large tire model L. For the model M, the total number
of degrees of freedom is n = 49800 and the number of nonzeros is approximately 84n. For the
model £, n is 84180 and there are approximately 86n nonzeros. A characteristic feature of both
models is that they incorporate orthotropic and isotropic as well as heterogeneous material
properties, which reflect the layered design of tires.

Computation of static equilibrium involves minimizing the potential energy II(u) with
respect to finite element nodal displacements u’(i = 1,2,3) subject to nonlinear boundary
conditions, which change the symmetry of a tire. The equilibrium equations of the model are
obtained by setting the variation §II(u) to zero, or equivalently

V II(u) = 0.

The Jacobian matrix of the equilibrium equations is obtained by finite difference
approximations. The distributed load is scaled by a (loading) parameter A, and as A varies the
static equilibrium solutions trace out a curve. The difficulty of the finite element problems and
concomitant linear systems varies considerably along this equilibrium curve, as well as within
the nonlinear iterations to compute a particular point on this curve.

A recent preliminary study of iterative methods applied to this class of problems in tire
design is reported in [15]. It was found that a variation of the incomplete LU factorization
with pivoting serves well as a preconditioner to achieve acceptable speed of convergence for
the model M. This paper presents results from applying a multilevel preconditioning scheme
[13] and considers larger (model £) problems.

The rest of the paper is organized as follows. Section 2 discusses the matrix characteristics.
The choice of accelerator and preconditioning strategies is explained in Section 3. A comparison
of the two preconditioning strategies is provided in the numerical experiments section
(Section 4). Section 5 summarizes the results and suggests future work.

2. Matrix characteristics

In nonlinear stability analysis, a sequence of sparse linear systems must be solved. Although
the systems in a sequence have many (mostly structural) characteristics in common, their
numerical properties vary substantially. The structural symmetry of the resulting matrices is
preserved throughout the equilibrium computation. Each matrix has a 3 x 3 block structure,
in which some of the entries in the block may have zero values. The matrix block structure
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Figure 2. Matrix pattern and values before reordering.

can be readily exploited in the solution process by treating a block as a single entry. Such
techniques are quite common in computational fluid dynamics applications, see for example
[4]. The matrices have been reordered for the linear system solution. Sparse matrix reordering
plays an important role in any solution technique applied. For direct methods that are based on
complete matrix factorization, it governs the work and storage required. For iterative methods,
it affects the quality of the preconditioning. Figure 2 shows the original element numbering,
which is disastrous for either a direct or iterative solution technique: for a direct method fill-
in is excessive and pivoting is required, while a preconditioner for an iterative method fails
because of zeros on the diagonal and also needs pivoting. Figure 3 depicts the matrix reordered
according to the element connectivity to minimize the average nonzero bandwidth. For the
model M, the resulting maximum and average bandwidths are 3840 and 1920, respectively,
with 90% of the nonzeros in the band of width 2645 as reported by a routine from [11]. Applying
a direct method to the reordered matrix 90% of the bandwidth becomes full.

Due to the presence of extremely heterogeneous material properties, the relative magnitudes
of the entries in the resulting stiffness matrix differ greatly (Figures 2 and 3). A result is that
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many diagonal entries tend to be relatively small. The row ¢ of matrix A = (a;;) is weakly
diagonally dominant if

n
laii| > ) lail-

j=1

i
A large number of nondiagonally-dominant rows and columns is typical of the matrices in
a sequence. The percent of (weakly) diagonally dominant rows ranges between 3.5% and
6%. The smaller this number, the more difficult the linear systems considered here are
to solve iteratively. Near the beginning of the equilibrium computation, the matrices are
symmetric in value and have more (weakly) diagonally dominant rows. Near the end of the
equilibrium computation the linear systems have pronounced asymmetries due to the treatment
of stationary solutions of rotation [8]. For example, a matrix of the linear system in the model
M towards the end of the nonlinear convergence has the Frobenius norm of its nonsymmetric
part (A — A?)/2 equal to 1.84 x 107 with a Frobenius norm of 4.38 x 10*! for the whole matrix
A.

The spectrum of the matrix can sometimes be quite informative about difficulties iterative
methods might encounter. Given the size of the matrix, it is not practically feasible to compute
all its eigenvalues. In fact computing the whole spectrum would not be useful, but a look at
the eigenvalue estimates nearest to the origin shows a very strong clustering around zero. This
gives another sign of potential trouble for iterative methods. As an example, Figure 4 shows
the 200 leftmost eigenvalue estimates obtained for the matrix M. The eigenvalues are not
computed accurately. Their estimates result from the use of the deflated GMRES algorithm
described in the next section. However, the strong clustering is certainly real.

In addition to extremely unfavorable clustering of the spectrum, the matrices tend also
to be very ill-conditioned. Thus, a typical 1-norm condition number for the medium model
problem was calculated to be approximately k; ~ 1.69 e+10. This is obtained from the sparse
direct factorization code SuperLU [6]. More than the pure condition number, the clustering of
eigenvalues around zero may be the most damaging of all the characteristics of the matrix.

3. Accelerators and preconditioners considered

For linear systems that are hard to solve by iterative methods, it is important to combine
enhanced accelerators with accurate and efficient preconditioners. For systems arising in
equilibrium computations of structures, a rapid iterative convergence is hard to obtain.
The main reason is that the matrices are structurally symmetric but indefinite, which
negatively affects the convergence rate of classical iterative methods. In stability analysis, a
straightforward application of some well-known preconditioning techniques, such as incomplete
LU factorization, often leads to unacceptable performance. Such preconditioning should be
tuned to the problem at hand and used along with an appropriate accelerator.

3.1. Enhanced accelerators

In [16], an adaptive version of a popular solution method GMRES(m) was used for solving
difficult structural mechanics problems. Following the results of [15], we consider another
version of GMRES(m), deflated GMRES(m) [10, 3]. Deflated GMRES(m) is a variation of
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Figure 3. Matrix pattern and values after reordering,.

standard GMRES(m) in which eigenvectors corresponding to the smallest eigenvalues are
added to the Krylov subspace to prevent stalling of the GMRES(m) convergence. Specifically,
eigenvectors from a previous GMRES (outer) iteration are added to the basis of the next
Krylov subspace. In addition, this new subspace is also used to improve the accuracy of the
desired eigenvalues to be used for the next iteration. Note that the approximate eigenvalues
and eigenvectors are obtained as by-products of the iterative process and are inexpensive to
compute. At each step, a small generalized eigenvalue problem of size m, the dimension of the
Krylov subspace, is solved, see [10, 3] for details.

The gains in performance can be spectacular in some cases. In other cases, specifically when
the procedure is not able to capture the smallest eigenvalues accurately, the strategy may not
help. In our case, deflation is often quite helpful. For example, for the medium problems in the
middle of the nonlinear iteration, deflated GMRES(m) speeds up convergence by 60 iterations
compared with restarted GMRES.
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Figure 4. Model M: Estimates for eigenvalues closest to the origin

3.2. Preconditioners

A number of preconditioning options have been tested for the types of problems considered
here. Simple diagonal scaling alone or successive overrelaxation (SOR) [12] were not effective.
Sparse approximate inverse techniques (see, e.g., [12]) are not considered here because it is
difficult to define a priori or expensive to capture dynamically a good sparsity pattern for the
matrix inverse. Recent developments [2, 5] in these techniques, however, may be effective for the
problems considered. Several variations of incomplete LU factorization, such as incomplete LU
factorizations with dual threshold (ILUT) and based on levels-of-fill (ILU(k)), both available in
SPARSKIT [11], and a block version BILU(k) [4] of ILU(k), were also tested for the problems
considered. At first, each of the preconditioning techniques failed to produce a suitable
preconditioner. A set of transformations was required to stabilize the preconditioners [15].
When this is done, ILU(k) and ILUT lead to a similar convergence rate for the same number
of fill-in elements. Accordingly, this paper will only show the results and transformations of
incomplete factorization preconditioners using ILUT as an example.

The first type of preconditioning considered here was constructed based on an incomplete
LU factorization in which the fill-in is controlled by a parameter. In particular, a preconditioner
ILUT with a dual-threshold dropping strategy was considered (see [12] for a detailed
description). A version of ILUT with partial column pivoting (ILUTP) is also available from
SPARSKIT and ILUTP was used in the preconditioning to prevent ill-conditioning of the
preconditioning matrix.

The second type of preconditioning considered that benefits convergence is the Algebraic
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Recursive Multilevel Solver (ARMS). This is an algebraic multigrid-like algorithm that requires
no underlying set of grids for defining prolongation and restriction operators. ARMS starts
by reordering the matrix using independent set or group-independent set orderings, see [13]
for details. In short, a group-independent set is defined by selecting a set of small ‘groups’
of nodes in the adjacency graph that are such that nodes between different groups are not
coupled. Within each group, nodes can be coupled to each other. This is illustrated in Figure
5.
When reordering the matrix by labeling the nodes of the group-independent set first, a

matrix of the following form is obtained

B F

(2 ¢)

in which B is diagonal or block-diagonal with small blocks.
The above matrix is then approximately block-factored as

(e c)~(6 (" )

again using dropping strategies. Then the reordering and factorization are repeated recursively
on the Schur complement matrix S, for a small number of levels. At the last level the matrix S
is factored using again a standard ILUT or ILUTP factorization. Both the construction of the
preconditioner and the forward-backward solutions in ARMS are recursive. In addition ARMS
allows inter-level iterations (referred to as W-cycles in the multigrid literature), though these
tend to be fairly expensive if the number of levels is high. For more details on this multilevel
preconditioner see [14] and [13].

A particular instance of the ARMS preconditioner as well as the ARMS performance for
a given iterative algorithm are controlled by several parameters, such as the block size and
number of levels specifying the block and level preconditioner structures, respectively. As
was mentioned above, ARMS can be set to utilize inner GMRES iterations for solving the
Schur complement systems arising at each level (W-cycles). However, in order to use deflated
GMRES(m), the preconditioning operation must stay constant in each iteration of deflated
GMRES(m). Therefore, no (inner) iterations should be allowed in the levels of ARMS. This
can be achieved by setting a proper parameter that selects a construction method in ARMS.
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8 M. SOSONKINA ET AL.

Another important parameter in the ARMS procedure is one which controls diagonal
dominance in the B matrix at each level. The algorithm which builds the block-independent
set, is programmed to reject the rows that have low diagonal dominance relative to other rows.
Specifically, the algorithm builds a vector w consisting of weights which are used for preventing
the selection of a given row into the independent set. This is done in two steps. First, some
raw diagonal dominance coefficients are computed as

(i) = 57—
> lasl
j=1
Note that 0 < (i) < 1 and that, when a; # 0, the inverse of w(i) is w(i)™! =

1+ 374 laij/ai;|. Then, from these numbers, a relative set of weights is constructed, for
example, from

|aii|

These weights are now used as a criterion for rejecting rows: if w(i) < 7, then row ¢ will be
rejected. For details see [13].

3.3. Adapting preconditioners for tire design problems

The first important observation is that, when tried “as-is” each of the preconditioners we
considered failed even for very large fill-in values. In fact, the preconditioner application causes
the iterative process to abort immediately indicating a severe instability of the incomplete
LU factorizations used. An effective technique to deal with preconditioning instability is
to shift the matrix A by a scalar «, construct the preconditioning for A + al, and then
apply this preconditioner to the original matrix [9]. The problem, however, is that, for large
shifts, the preconditioner becomes an inaccurate approximation of the original matrix inverse.
For the linear systems considered here, only rather large shift values (ranging from 0.01 to
0.1) prevented instability of the preconditioner. Combined with pivoting (ILUTP) and with
a multilevel approach (ARMS), acceptable preconditioner accuracy and stability could be
achieved.

Filtering of small off-diagonal entries was found to be very beneficial in obtaining inexpensive
incomplete LU factorization based preconditioners for the shifted matrix A+ «af. In particular,
rows and then columns are scaled by their 2-norms and the matrix is shifted before being
filtered. The preconditioner inaccuracy caused by filtering appears to be negligible in this
case. However, the preconditioner construction is faster since fewer nonzeros remain in the
preconditioner. We have observed that for the problems under consideration after such a
filtering process, the majority of (weakly) diagonally dominant rows have all their off-diagonal
entries dropped. The corresponding rows constitute an independent set, which we call the
trivial independent set. For the problems under consideration, constructing ARMS with this
independent set has the following effects:

(a) The Schur complement submatrix becomes diagonally nondominant.

(b) No dropping occurs in the upper-left submatrix constructed by ARMS.
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PRECONDITIONING FOR LINEAR SYSTEMS IN TIRE DESIGN 9

Table I. Relation between the number of fill-in elements permitted during the preconditioner
calculation and the number of iterations till convergence

| Problem || 1£fil1=100 | 1fil=170 | 1£i1=250 | 1£fil=400 |
P1 276 273 273 273
P4 321 320 321 319

(c) After a few reduction levels using trivial independent sets, the most expensive part of the
preconditioner construction, the ILUT factorization at the last level, is carried out on a
sparser matrix and thus takes much less time than with an arbitrary block independent
set.

4. Numerical Experiments

The goal of the experiments reported here is to compare two preconditioning techniques:
ILUTP and ARMS. Both preconditioners are constructed for the matrix with shifted diagonal
to stabilize the preconditioners. The parameters controlling the amount of fill-in are adjusted
such that the total numbers of nonzeros in the resulting preconditioners are approximately
the same. Consider symmetric (easy) and nonsymmetric (difficult) matrices in models M
and £ with random initial guess. Deflated GMRES(54) with 4 eigenvectors was used in the
experiments to reduce the residual norm by 106.

4.1. Varying fill-in

ILUT with pivoting had a dropping tolerance of 10~* and a maximum of 90 and 80 fill-
in elements per row in the incomplete LU factors of the model M and model £ matrices,
respectively. When an ILU factorization serves as a preconditioner, a well-known approach to
accelerating convergence is an increase of the number of fill-in elements in the preconditioner.
However, for large shift values, the accuracy of the preconditioner deteriorates, showing no
convergence improvement with larger fill-in. For two linear systems obtained at different steps
of the equilibrium computation, Table I presents the dependency of the number of iterations
on the parameter 1fil controlling the number of nonzeros in the ILUT preconditioning with
pivoting and shift & = 0.1. The relatively low change in the number of iterations with respect to
the variation in 1£il values confirms that the preconditioner will remain a poor approximation
of A because of the relatively large shift used, independent of the accuracy used to approximate
A+ al.

4.2. Varying parameters in ARMS

In ARMS the dropping tolerance of 102 was used and the last reduced system was factored
with an upper bound of 350 fill-in elements. The intermediate levels had a maximum of 250 fill-
in elements. In our experiments with ARMS, these upper bounds were never reached, however.
On average, the number of nonzeros in the preconditioner was about twice the number of
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10 M. SOSONKINA ET AL.

Table II. Comparison of ARMS for two different block sizes and level numbers

| Precon. || bsize | levels | Nonzeros | Construct. | Iterations |
Al 10 3 | 23,424,440 905.80s 213
A2 100 3 | 20,408,489 2004.65s 324
A3 10 5 | 23,706,339 1083.56s 217

nonzeros in the original matrix. The upper bounds on fill-in and the dropping tolerance were
selected such that the construction of the ARMS preconditioner is not the major cost and the
preconditioner is sufficiently well-conditioned to enable an acceptable convergence rate.

Our experience with this type of problems shows that taking small blocks (of size 3 or 10)
instead of larger blocks (of size 100) yields a better ARMS preconditioner. This result might
be attributed to the block structure of the original matrices. For example, Table II compares
three variations of the ARMS preconditioner for a symmetric model M problem. Two of them,
Al and A2, have the same values of all the parameters except for the block size, which is equal
to 10 and 100 (column bsize), respectively. The total preconditioner construction time is
shown in the column Construct, the number of iterations until convergence is in the column
Iterations, and the number of nonzeros in preconditioner is given in the column Nonzeros.
Note that no filtering or trivial independent set was used to obtain results in Table II.

Varying the number of ARMS levels from 2 to 5 did not affect significantly the preconditioner
performance, but fewer levels made the preconditioner construction less expensive. In Table II,
preconditioners Al and A3 are constructed with the same values for all the parameters but
the number of levels (column levels), is 3 and 5, respectively. The number of levels was set
to two for the experiments with ARMS in the next subsections.

4.8. Block Independent Set strategies and filtering the matriz

Filtering of the small (1073®) off-diagonal entries has been performed to construct the
preconditioner. For a symmetric model M matrix, Table III shows the dependence between the
complexity of block independent sets in ARMS (controlled by the parameter w(i), i1 =1,... ,n,
defined to be the relative diagonal dominance of matrix row ¢, see subsection 3.2) and the
numbers of nonzeros in the entire ARMS preconditioner and in its last level (solved by ILUT).
The total preconditioner construction time is shown in the column Construct. As indicated
by the data in the column Iterations, a more positive effect on convergence is seen when
trivial independent sets are used (i.e., when w(i) = 1.0 for all the rows) in preconditioner
construction. This can be attributed to a better conditioning of the B block in the case of
trivial independent sets. The columns Last System and Total present the number of nonzeros
in the linear system produced at the last (third) level of the block factorization and in the
entire preconditioner, respectively. When trivial independent sets are used, the last-level linear
system is often quite large, since larger values of the parameter w usually generate smaller
independent sets rejecting more rows as not sufficiently diagonally dominant. With w = 1.0,
the last reduced system is also sparser, which makes the preconditioner construction less
expensive. In general, it seems beneficial to use trivial independent sets when, for other values
of the parameter w(i), ¢ = 1,...,n in ARMS, the size of the reduced system remains large
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PRECONDITIONING FOR LINEAR SYSTEMS IN TIRE DESIGN 11

Table III. The effect of varying the independent set parameter on the preconditioner

| w | Construct. | Iterations | Last System | Total |
0.1 278.965 130 | 12,275,196 | 14,104,476
1.0 66.13s 98 7,932,632 8,026,226

relative to the size of the original one. For the ILUTP preconditioner, if we reorder the input
matrix such that the rows in the trivial independent set represent its upper-left submatrix, the
resulting preconditioner does not lead to convergence within 2,000 iterations. This suggests
that a multilevel approach may play a major role in accelerating convergence.

4.4. Performance variation with respect to right-hand side

It has been observed that the choice of the right-hand side may affect convergence significantly.
If the right-hand side is taken at random, for example, in the solution of a symmetric model
M problem, then the residual norm is reduced only by 10° when ARMS is applied in 2,000
iterations, and the convergence stagnates with ILUTP. On the other hand, if the right-hand
side is chosen such that the solution consists of all ones (Figures 6 and 7) or if the right-
hand side is obtained from the physical model and properly scaled (Figures 8 and 9), then
the convergence is not hindered. The latter two figures display almost identical convergence
histories for the ILUTP and ARMS preconditioners: both rapidly reduce the residual in the
beginning and tail off towards the end of the convergence. It takes much less time, however,
to construct the ARMS preconditioner (see Tables IV and V) because an incomplete ILUT
factorization, which is quite expensive, is performed on a smaller and sparser system only in
the last level of ARMS.

In Tables IV and V, the solution times (on a DEC Alpha) are shown for the convergence
curves in Figures 6, 7 and Figures 8, 9, respectively. From Table IV, it is clear that both
methods work harder for the system at the end of the nonlinear Newton iteration when all the
nonlinear constraints are enforced. Note that the ARMS preconditioner outperforms ILUTP
for the difficult problems (Figure 7, right and Figure 8, right). It appears in this case that the
high degree of nonsymmetry and the low rate of diagonal dominance do not have as negative
an effect on ARMS as they do on ILUTP.

4.5. The curse of poor conditioning

In all cases, convergence slows down considerably after the residual norm is reduced by a
factor of about 10~%. (The same residual norm reduction was observed when the residual
was computed by matrix-vector multiplication or by the linear combination of the search
directions.) At this stage of the convergence history, there is almost no reduction in the
error norm of the solution, Typically, a low-accuracy solution can be effectively used in a
nonlinear iteration performed with an inexact Newton-type method (see, e.g., [7]). However,
our attempts to employ the obtained linear system solution in the context of these nonlinear
methods were not successful due to the lack of solution accuracy. Thus, a higher accuracy is
desired from the iterative process for the solution to be usable even by the inexact Newton
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Figure 6. Model M: Residual norm reduction for symmetric (left) and nonsymmetric (right) linear
systems with right-hand side corresponding to the solution of all ones
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Figure 7. Model £: Residual norm reduction for symmetric (left) and nonsymmetric (right) linear
systems with right-hand side corresponding to the solution of all ones

methods. To accelerate the convergence, an iterative refinement would be beneficial for a
reasonably conditioned system, for which stagnation occurs at the level of working precision. In
[17], it has been shown that evaluating the residual in higher precision allows greater residual
norm reduction in the working precision. The problems under consideration are highly ill-
conditioned, however, and iterative refinement produced no significant improvement in the
convergence compared with continuing to iterate with the working precision. In particular,
when the residual is evaluated in higher precision at each restart of deflated GMRES, which is
run for several restart cycles, there is no improvement in the residual norm reduction. As was
already mentioned, the linear systems tend to become harder to solve as the nonlinear iterate
converges to the solution.
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Figure 8. Model M: Residual norm reduction for symmetric (left) and nonsymmetric (right) linear
systems with right-hand side taken from the physical model
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Figure 9. Model £: Residual norm reduction for symmetric (left) and nonsymmetric (right) linear
systems with right-hand side taken from the physical model

4.6. The nonlinear context

To show the varying difficulty of the linear systems in a nonlinear iteration, a complete sequence
of systems has been solved using the ARMS preconditioner. This sequence corresponds to a
symmetric nonlinear system of 20,125 unknowns with the matrix characteristics similar to
symmetric model M and £ problems. Solution times for each of the eight linear systems are
depicted in Figure 10.

5. Conclusions

The sparse linear systems arising in tire equilibrium computations are challenging for iterative
solution methods. The treatment of stationary solutions of rotation makes the systems
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Table IV. Solution and preconditioner construction CPU times (in seconds) for symmetric and
nonsymmetric problems with right-hand side corresponding to the solution of all ones

model M model £
Symmetric | Nonsymmetric Symmetric | Nonsymmetric
| Precon. || ILUTP | ARMS | ILUTP | ARMS || ILUTP | ARMS | ILUTP | ARMS |
Construct. 404.09 66.08 408.60 74.26 727.53 122.22 643.58 115.72
Solution 114.39 | 228.75 | 518.49 | 1003.95 256.60 | 1056.70 | 2206.18 | 2126.07
Total 518.48 | 294.83 927.09 | 1078.21 984.13 | 1178.92 | 2849.76 | 2241.79

Table V. Solution and preconditioner construction CPU times (in seconds) for symmetric
nonsymmetric problems with right-hand side taken from the physical model

and

model M model £
Symmetric | Nonsymmetric Symmetric | Nonsymmetric
| Precon. || ILUTP | ARMS | ILUTP | ARMS || ILUTP | ARMS | ILUTP | ARMS |
Construct. 402.64 66.13 | 408.34 73.69 728.37 | 122.30 644.58 | 116.50
Solution 113.12 | 102.41 | 144.73 | 112.83 256.83 | 250.72 381.09 | 394.14
Total 515.76 | 168.54 | 553.07 | 186.52 985.20 | 373.02 | 1025.67 | 510.64
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Figure 10. Solution times for the sequence of eight linear systems
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extremely ill-conditioned during the nonlinear convergence process. In such a situation, very
good preconditioning is mandatory. However, a large number of diagonally nondominant rows
and columns hinders the effectiveness of preconditioning for accelerating iterative method
convergence.

The performance of a new multilevel preconditioning technique (ARMS) has been compared
with a variation of an incomplete LU factorization (ILUTP) that benefits convergence for
this class of problems in structural mechanics. Both ILUTP and ARMS have been combined
with a deflated version of GMRES(m) and augmenting the diagonal elements. An unexpected
observation is that for both preconditioners convergence is improved only when a rather large
shift is applied to the matrix diagonal. As a result, increasing the allowed fill-in in both
preconditioners does not reduce the number of iterations for convergence. In summary, the
main conclusions from the comparison are: (1) the multilevel approach is more advantageous
for difficult nonsymmetric problems whereas an ILU preconditioner delivers comparable or
better performance for symmetric problems. (2) Shifting of the diagonal leads to a more
stable preconditioner for both ILUTP and ARMS factorizations. The size of the shift is
very important: while making the preconditioner more stable, large shift values cause the
preconditioner to be a poor approximation of the original matrix. (3) Unless special precautions
are taken, the preconditioner construction may easily dominate the solution cost. Special
techniques such as filtering of small entries and the use of trivial independent sets (in ARMS)
have been found to be very helpful in reducing the cost of the preconditioner construction. (4)
The solution of linear systems arising in tire design depends heavily on the right-hand side
value. (5) Both preconditioners are rather robust since they enable the solution of the linear
systems of varying difficulty with the relative tolerance of 10~° in the residual norm reduction.
A higher accuracy in the solution has not been achieved. It is conceivable that extreme ill-
conditioning prevents one from obtaining further residual reduction unless a very accurate
preconditioner, close to a direct solver, is used. This remains a subject of further investigation.
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